
©2024 Databricks Inc. — All rights reserved 1

Delta Live Tables
in Depth

Michael Armbrust, Distinguished Engineer
Paul Lappas, Sr Staff Product Manager

Data & AI Summit, June 2024

This information is provided to outline Databricks’ general
product direction and is for informational purposes only.
Customers who purchase Databricks services should
make their purchase decisions relying solely upon
services, features, and functions that are currently
available. Unreleased features or functionality described in
forward-looking statements are subject to change at
Databricks discretion and may not be delivered as
planned or at all

Product safe harbor statement

©2024 Databricks Inc. — All rights reserved

Reliable data
pipelines
require a
unified
platform
with data
intelligence

Unified data storage for reliability and sharing
Delta Lake UniForm

Data Science
and AI

Mosaic AI

ETL and Real-Time
Analytics

Delta Live Tables

Orchestration

Workflows

Data Warehousing

Databricks SQL

Open Data Lake

All Raw Data
(Logs, Texts, Audio, Video, Images)

Unified security, governance and cataloging
Unity Catalog

An AI powered data intelligence engine to understand the semantics of your data

DatabricksIQ

©2024 Databricks Inc. — All rights reserved

“Data problems are
the most likely factor

to jeopardize our
AI/ML goals”

—MIT Technology Review
Insights survey, 2022

By 2026, over 80% of
enterprises will be using GenAI
in production environments, up

from less than 5% in 2023
—2023 Gartner Hype Cycle

for Generative AI

AI initiatives are
top of mind…

…but good models can’t
overcome bad data

Good data is the foundation of a Lakehouse
All organizations need clean, fresh and reliable data.

Data Lake

Message
buses

BI & Reporting

GenAI

Data Science &
ML

Connectors

Raw Ingestion
and History

BRONZE

Filtered, Cleaned,
Augmented

SILVER

Business-level
Aggregates

GOLD

Quality

But the reality is not so simple
Data quality and reliability at scale is often complex and brittle

Data Lake

Message
buses

BI & Reporting

GenAI

Data Science &
ML

Connectors

Delta Live Tables
From queries to production pipelines

Data Lake

Message
buses

BI & Reporting

GenAI

Data Science &
ML

Connectors
Automatic
Operations

Dependency
management

Observability Data Quality Incremental
processing

CREATE STREAMING TABLE raw_data as
SELECT * FROM STREAM read_files(…)

CREATE MATERIALIZED VIEW clean_data
as SELECT … FROM raw_data

Delta Live Tables

©2024 Databricks Inc. — All rights reserved

Assumes the system is dumb. Assumes the SYSTEM is smart.
(And you have better things to do!)

Imperative

total = 0
for i in range(1, 6)

total += i
print(total)

SELECT
sum(i)

from
<source>

Example: Step-by-step instructions Example: Simply describe the desired outcome

Declarative

What is declarative programming?

©2024 Databricks Inc. — All rights reserved

Simple

Powerful

Build and run DAGs with
PIPELINES

Evolve sources and destinations
FLOWS and SINKS

Transform with
STREAMING TABLES

& MATERIALIZED VIEWS

Ingest with
INGESTION

CONNECTORS

DLT powers declarative data engineering on the lakehouse

Opinionated

Expressive

©2024 Databricks Inc. — All rights reserved

A simple way to stream and perform
low-latency transformations on data.

Benefits:
1. Enable more practitioners. Simple SQL syntax

makes data streaming accessible to all data
engineers and analysts.

2. Better scalability. More efficiently handle high
volumes of data via incremental processing vs
large batches.

3. Unlock real-time use cases. Ability to support
real-time analytics/BI, machine learning and
operational use cases with streaming data.

Cloud Storage
(S3, ADLS, GCS)

Message Queues
(Kafka, Pub/Sub, Kinesis, etc)

CREATE STREAMING TABLE web_clicks
AS
SELECT *
FROM STREAM

read_files('s3://mybucket')

CREATE STREAMING TABLE server_logs
AS
SELECT from_json(...) data
FROM STREAM
read_kafka(...)

Data stream

Streaming Table

©2024 Databricks Inc. — All rights reserved

Perform complex transformations for ETL
and accelerate end-user queries for
dashboards/BI.

Benefits:
1. Accelerate queries / dashboards. Much faster to query

data that is pre-computed vs querying base tables.

2. Improve data freshness. MVs can be incrementally
refreshed when new data arrives, avoiding time-
consuming full recomputes

3. Simple ETL. Transform and process data in a
declarative way.

CREATE MATERIALIZED VIEW customer_orders
AS
SELECT

customers.name,
sum(orders.amount),
orders.orderdate

FROM orders
LEFT JOIN customers ON

orders.custkey = customers.c_custkey
GROUP BY

name,
orderdate;

Results are pre-
computed and
incrementally

refreshed
orders
(Table)

customers
(Table)

Materialized View

©2024 Databricks Inc. — All rights reserved

Views in DLT
Modularizing your code

Views are, a name that is substituted with a query

• Use views to break up large/complex queries

• Expectations on views can validate correctness of intermediate results

• Views are recomputed every time they are queried

When multiple tables need the same result, consider a streaming table or
materialized view instead.

©2024 Databricks Inc. — All rights reserved

dbt

DLT pipeline

Gold LayerSilver LayerBronze Layer

customers_raw
Streaming
Table

orders_raw
Streaming
Table

customers_clean
Streaming
Table

orders_clean
Streaming
Table

customer_orders
Materialized
View

dbt-core v1.8 includes full support for Databricks’ streaming tables and materialized views

dbt Pipelines using MV’s and ST’s in DBSQL
Native streaming ingestion and automatic incremental refresh of models

©2024 Databricks Inc. — All rights reserved

New MV/ST observability features

©2024 Databricks Inc. — All rights reserved

Demo: Materialized Views
Observability

©2024 Databricks Inc. — All rights reserved

©2024 Databricks Inc. — All rights reserved

● Automated DAG resolution

● Environment isolation

● Automated recovery, upgrades,
scaling and optimization

● Declarative APIs for data quality and
CDC

Automatic
Operations

Orchestration Observability Data Quality CI / CD

UNITY
CATALOG

Streaming Table

Materialized View Materialized View

Streaming Table

Pipeline
Consists of source code, data location, and configuration

©2024 Databricks Inc. — All rights reserved

CDC, source evolutions, backfills,
and initial hydration of streaming
tables

Change data capture

Backfill data in streaming tables

Add and remove data sources without a full refresh

CREATE STREAMING TABLE raw_data

CREATE FLOW kafka_us_east
AS INSERT INTO LIVE.raw_data BY NAME
SELECT * FROM kafka(…)

CREATE FLOW kafka_us_west
AS INSERT INTO LIVE.raw_data BY NAME
SELECT * FROM kafka(…)

APPLY CHANGES from different
streams
apply_changes(
flow_name = "silver_data_main",
target = "silver_data",
source = "bronze_change_data",
keys = ["id"],
ignore_null_updates = True,
stored_as_scd_type = "1",
sequence_by = "seq",
apply_as_deletes = "op = 'DELETE'"

)

Flow
Easiest way to do structured streaming

©2024 Databricks Inc. — All rights reserved

Sinks define a target for a FLOW to
send data

Supports operational and reverse ETL use cases

Reuse connection information stored in UC

File sink, unmanaged Delta tables, ForEachBatch,
Kafka, and custom sinks (Data Source v2, Python
Data Source APIs)

CREATE SINK real_time
FORMAT kafka
OPTIONS (...)

create_sink(
name = "my_kafka_sink",
format = "kafka",
options = {
"bootstrapServer": "hostA",
},

)

Sink
Write to any location

Private Preview

©2024 Databricks Inc. — All rights reserved

Simple
● Simple development: Declarative programming for batch

and streaming pipelines including ingestion, transformation,
CDC/SCD and data quality expectations

● Simple operations: Serverless infrastructure for
vertical/horizontal autoscaling, automated orchestration
and fast startup & retries

Data Pipelines Made Simple with DLT

CREATE STREAMING TABLE raw_data
AS SELECT *
FROM cloud_files ("/raw_data",
"json")

CREATE MATERIALIZED VIEW clean_data
AS SELECT …
FROM raw_data

Delta Live Tables

Low TCO
● Efficient data processing: Incremental ingestion

and transformation
● Efficient billing: Only pay for what you use

Performant
● Rapid infrastructure scale-up
● Continuous mode for streaming
● Stream pipelining for fast ingestion and task parallelization
● Fast incremental transformation with Enzyme

©2024 Databricks Inc. — All rights reserved

Simplicity ● Simple development
● Simple operations

Performance ● End-to-end incremental processing
● Parallelized ingestion

Low TCO ● Serverless metering
● Efficient data processing

DLT with serverless compute
The simplest way to build data pipelines

©2024 Databricks Inc. — All rights reserved

Simplicity ● Simple development
● Simple operations

Low TCO ● Serverless metering
● Efficient data processing

Performance ● End-to-end incremental processing
● Parallelized ingestion

DLT with serverless compute
The simplest way to build data pipelines

©2024 Databricks Inc. — All rights reserved

Ensure correctness with expectations in DLT
Manage and monitor data quality in real-time

©2024 Databricks Inc. — All rights reserved

Simple, declarative API

Supports SCD1 or SCD2 storage formats

Python API support

Streaming CDC API
Process change records from a streaming change-data-feed

-- Create and populate the target table.
CREATE STREAMING TABLE target;

APPLY CHANGES INTO
live.target

FROM
stream(cdc_data.users)

KEYS
(userId)

APPLY AS DELETE WHEN
operation = "DELETE"

SEQUENCE BY
sequenceNum

STORED AS
SCD TYPE 2;

UPSERT
via CDC

UPSERT
via CDC

UPSERT
via CDC

Streaming
Sources

Cloud

Structured
Data

Unstructured
Data

Semi-
structured

data

Data Migration
Services

Data
Sources

©2024 Databricks Inc. — All rights reserved

Synchronize data from any source
when you have access to full
snapshots

Simple, declarative API

Supports SCD1 or SCD2 storage formats

Python API support

Batch CDC API
Use DLT to process changes from full snapshots

def apply_changes_from_snapshot(
target,
snapshot_and_version,
keys,
stored_as_scd_type,
track_history_column_list = None,
track_history_except_column_list =

None) -> None

©2024 Databricks Inc. — All rights reserved

null

Slowly Changing Dimensions Type 2
Keep a record of how values changed over time.

city_updates

{"id": 1, "ts": 01:00, "city": "Berkerly, CA"}
{"id": 1, "ts": 02:00, "city": "Berkeley, CA"}

id
1

cities

city
Bekerly, CA

__starts_at
01:00

__ends_at
02:00

1 Berkeley, CA 02:00 null
SCD2 is supported for both

batch and streaming CDC APIs

CREATE STREAMING TABLE cities

APPLY CHANGES INTO LIVE.cities
FROM STREAM(city_updates)
KEYS (id)
SEQUENCE BY ts
STORED AS SCD TYPE 2

__starts_at and __ends_at will have the type
of the SEQUENCE BY field (ts).

©2024 Databricks Inc. — All rights reserved

Horizontal Autoscaling

Enhanced autoscaling optimizes
compute utilization while
ensuring maximum concurrency

● Only scaling up to the
necessary compute required

● Gracefully shuts down
computed when utilization is
low to avoid unnecessary
spend

Automatically scale compute to handle high number of concurrent tasks

©2024 Databricks Inc. — All rights reserved

Vertical Autoscaling
Automatically scale memory to handle complex workloads

• Horizontal helps, but may not be the most efficient with memory pressure.
• Automatic Vertical Scaling when Job runs into OOMs
• Scales down when larger instances are no longer needed

Compute
Optimize

Memory
Optimize

Failure: OOM

More memory to Complete
job

Automatic
Retry

SERVERLESS EXCLUSIVE

©2024 Databricks Inc. — All rights reserved

UPGRADED

DOWNGRADED

PINNED

Fix deployed,
restart succeeds
on new version

Updated fails,
restart on
previous
version

Updated
succeeds, pin
to previous
version

New update
after DBR

upgrade

Automated service upgrades
Health mediated upgrade process maximizes uptime for production pipelines

Best practices for production
pipelines:

● Use CURRENT channel and
‘production’ mode

● Configure restart
notifications with DLT
settings UI

● Continuously test
production pipelines against
the PREVIEW channel

©2024 Databricks Inc. — All rights reserved

Automated Data Management

What:

DLT encodes Delta best practices
automatically when creating DLT
tables.

How:

DLT sets the following properties:

• optimizeWrite
• autoCompact
• tuneFileSizesForRewrites

DLT automatically optimizes data for performance & ease-of-use

What:

DLT automatically manages your
physical data to minimize cost and
optimize performance.

How:

• runs vacuum daily
• runs optimize daily

You still can tell us how you want it
organized (ie CLUSTER BY)

What:

Schema evolution is handled for you

How:

Adding/removing/renaming a column
in a materialized view will
automatically do the right thing.

Old values are preserved with
removing a column from a streaming
table. Adding a column will add a new
column with NULL values for old data.

Best Practices Physical Data Schema Evolution

©2024 Databricks Inc. — All rights reserved

DLT operational dashboard

©2024 Databricks Inc. — All rights reserved

The Event Log

Time-series pipeline operations

Configurations and settings

Rows processed

Incremental refresh status

Real-time log of pipeline operations

Table schemas, definitions, and
declared properties

Table-level lineage

Query plans used to update
tables

Expectation pass / failure / drop
statistics

Input/Output rows that caused
expectation failures

Telemetry Lineage Data Quality

©2024 Databricks Inc. — All rights reserved

Get immediate notifications and ship the event log to your favorite tool

DLT Notifications and Monitoring

DLT Event Log

The event log is a table
created for each pipeline

Event Hooks

Notifications

©2024 Databricks Inc. — All rights reserved

Simplicity ● Simple development
● Simple operations

Performance ● End-to-end incremental processing
● Parallelized ingestion

Low TCO ● Serverless metering
● Efficient data processing

DLT with serverless compute
The simplest way to build data pipelines

©2024 Databricks Inc. — All rights reserved

Scheduling pipelines
Controlling data freshness versus cost

Costs: varies depending on schedule

Latency: 10 minutes to months

Costs: highest

Latency: minutes to seconds

TRIGGERED MODE CONTINUOUS MODE

©2024 Databricks Inc. — All rights reserved

Incremental Refresh for MVs
Cost based optimization powered by Enzyme

Delta Tracked
Changes

Query
Plan

Analysis

Monotonic Append

Partition Recompute

MERGE Updates

Full Recompute

C
ost M

odel
Optimal
Update

Technique

SERVERLESS EXCLUSIVE

©2024 Databricks Inc. — All rights reserved

Streaming tables with managed file events

Simplifying file notifications

● Single queue for all streams

● Lower risk of hitting cloud notification limits

● Simpler and faster than directory listing

● Enabled for serverless DLT or Jobs
* Preliminary testing. Not a formal benchmark.

Simple, high performance ingestion from external volumes

SERVERLESS EXCLUSIVE

©2024 Databricks Inc. — All rights reserved

Stream Pipelining
Concurrent batches allows for higher throughput and lower ingestion latency

SERVERLESS EXCLUSIVE

Improve performance

Reduces latency

Works for both stateless
and stateful streaming queries

©2024 Databricks Inc. — All rights reserved

Simplicity ● Simple development
● Simple operations

Performance ● End-to-end incremental processing
● Parallelized ingestion

Low TCO ● Serverless metering
● Efficient data processing

DLT with serverless compute
The simplest way to build data pipelines

©2024 Databricks Inc. — All rights reserved

In Serverless you only
pay for utilized cores

(slots).

DLT DBUs are the same
price as Serverless Jobs

and Serverless Interactive
Notebooks.

Serverless executor

Slot 1

Slot 3

Slot 2

Slot 4

Worker 1

Slot 1

Slot 3

Slot 2

Slot 4

Worker 2

Slot 1

Slot 3

Slot 2

Slot 4

Worker 3

SERVERLESS EXCLUSIVE

Serverless metering
Consumption based pricing for any workload

©2024 Databricks Inc. — All rights reserved

DLT Price-Performance

©2024 Databricks Inc. — All rights reserved

Measure price-performance of loading 100K
JSON files into a streaming table

Classic compute configuration
● Default instance type
● Enhanced autoscaling with max 64 workers
● Photon OFF

Bronze Zone

Streaming ingestion benchmark

©2024 Databricks Inc. — All rights reserved

Raw experiment results

©2024 Databricks Inc. — All rights reserved

Serverless DLT provides 4x better throughput

©2024 Databricks Inc. — All rights reserved

With 32% less TCO

©2024 Databricks Inc. — All rights reserved

Overall 5x better price performance than DLT classic

©2024 Databricks Inc. — All rights reserved

Create materialized view

CREATE MATERIALIZED VIEW <mv_experiment>
AS

SELECT
customer_id,
min(amount) AS min_amount,
max(amount) AS max_amount,
avg(amount) AS avg_amount,
sum(amount) AS total_amount

FROM
{bronze_table}

GROUP BY 1

Measure price performance of aggregating
a 200B-row Delta table w/ 2B unique keys

We ran 4 total updates
● First Update: initial load (ie CREATE)
● Subsequent Updates 2,3 and 4: update after

inserting 1000 rows

DLT Classic compute configuration
● Default instance type
● Enhanced autoscaling with 64 max clusters
● Photon OFF

MV refresh benchmark

©2024 Databricks Inc. — All rights reserved

Raw results (Initial loading)

©2024 Databricks Inc. — All rights reserved

45% less TCO with serverless on the initial loading

©2024 Databricks Inc. — All rights reserved

On the initial load, Serverless DLT provides

2x better throughput 50% lower latency

©2024 Databricks Inc. — All rights reserved

3.8x better price performance of initial load on serverless DLT

©2024 Databricks Inc. — All rights reserved

Raw results (Subsequent updates)

©2024 Databricks Inc. — All rights reserved

Incremental refresh resulted in 98% cost savings

$1 update
to refresh

MV w/
over 200B

rows!

©2024 Databricks Inc. — All rights reserved

On the subsequent updates, Serverless DLT provides

6.5x better throughput 85% lower latency

©2024 Databricks Inc. — All rights reserved

Serverless DLT provides over 340x better price-performance over Classic DLT

We get these results because:

• MVs are incrementally
refreshed in serverless

• Classic DLT MVs are always
fully refreshed (subsequent
MV refreshes are equivalent
to initial load)

©2024 Databricks Inc. — All rights reserved

Run in your own environment
DLT Ingestion and MV transformation benchmarks

http://bit.ly/dlt_serverless_tco

http://bit.ly/dlt_serverless_tco

©2024 Databricks Inc. — All rights reserved

Developing with DLT

©2024 Databricks Inc. — All rights reserved

Create materialized view
CREATE MATERIALIZED VIEW
<name>
AS….a

Creating A Pipeline
How to create a pipeline from the databricks UI

Write CREATE ST/MV
statements

Create a pipeline Click start

• Table definitions are written
in files (or notebooks)

• Python or SQL

• A Pipeline combines all
source code files

• DLT will create / update the
tables and execute them in
the correct order.

©2024 Databricks Inc. — All rights reserved

Automated dependency resolution

• Dependencies owned by other producers
are just read from the managed or
external data sources as normal.

• Dependencies from the same pipeline
are read from the LIVE schema

• DLT handles parallelism and captures the
lineage of the data.

DLT detects dependencies and executes all operations in correct order

reportevents

CREATE STREAMING TABLE events
AS SELECT … FROM prod.raw_data

CREATE MATERIALIZED VIEW report
AS SELECT … FROM LIVE.events

©2024 Databricks Inc. — All rights reserved

DLT detects dependencies automatically
(LIVE keyword no longer required)

Direct Publishing Mode in DLT

CREATE STREAMING TABLE catalog1.schema1.table1
AS

SELECT
*

FROM
cloud_files(`path`)

CREATE MATERIALIZED VIEW catalog2.schema2.table2
AS

SELECT
day, sum(sales)

FROM
catalog1.schema1.table1

GROUP BY day

Catalog 1
Schema 1

Catalog 1
Schema 2

Catalog 2
Schema 2

Publish tables to arbitrary catalogs and schemas from a single pipeline

©2024 Databricks Inc. — All rights reserved

Building reliable pipelines
Pipelines let you use software development best practices

• Develop in environment(s) separate from
production with the ability to easily test it
before deploying - entirely in SQL

• Deploy and manage environments using
parameterization

• Unit testing and documentation

• Enables metadata-driven ability to
programatically scale to 100s of
tables/pipelines dynamically

Lineage information
captured and used
to keep data fresh

anywhere

raw

clean

scored

Development

Staging

Productio
n

©2024 Databricks Inc. — All rights reserved

• Creating separate checkouts /
pipelines is onerous / error prone

• DABs allow you to version control
source code and pipeline
configuration

• Automate the creation of
multiple environments

raw

clean

scored

Development Pipeline
{target: michael_dev}

Staging Pipeline
{target:
reports_staging}

Production Pipeline
{target: reports}

Databricks Asset Bundles (DABs) for development
Single configuration for all Databricks assets, including DLT

Shared Git Repo

Checkout Per
Environment

©2024 Databricks Inc. — All rights reserved

Demo: DLT development in the
notebook

©2024 Databricks Inc. — All rights reserved

©2024 Databricks Inc. — All rights reserved

Reference architectures

©2024 Databricks Inc. — All rights reserved

Bronze

cloud_files

CREATE STREAMING TABLE

Can have a short
retention period in

your source to
reduce costs

Land data as-is
into Delta. Avoid

complex
transformation

that could
introduce data

quality problems

Retain infinite history
in Delta

Easy to perform
GDPR and other

compliance tasks

CREATE STREAMING TABLE

Perform simple joins and
aggregations, or CDC with

APPLY CHANGES

Silver

Streaming table don’t propagate
changes, and require watermarks

or time intervals to control
memory utilization

Streaming tables for high speed, simple transformations

©2024 Databricks Inc. — All rights reserved

CREATE STREAMING TABLE

Silver A

CREATE STREAMING TABLE

Silver B

CREATE MATERIALIZED VIEW

GOLD A

MVs are incrementally
refreshed (when possible) in

serverless

MVs can be created on any
query, are always correct, and

automatically propagate
updates and deletes.

Materialized views for complex transformations and modeling

©2024 Databricks Inc. — All rights reserved

CREATE STREAMING TABLE raw_data

CREATE FLOW kafka_us_east
AS INSERT INTO LIVE.raw_data BY NAME
SELECT * FROM kafka(…)

CREATE FLOW kafka_us_west
AS INSERT INTO LIVE.raw_data BY NAME
SELECT * FROM kafka(…)

CREATE FLOW kafka_eu
AS INSERT INTO LIVE.raw_data BY NAME
SELECT * FROM kafka(…)

kafka_us_east

kafka_us_west

kafka_eu

raw_data

Useful for backfills, corrections, and initial hydration of
RDBMS sources

Seamlessly evolve streaming sources with Flows
Without a full refresh

	Delta Live Tables in Depth
	

This information is provided to outline Databricks’ general product direction and is for informational purposes only. Customers who purchase Databricks services should make their purchase decisions relying solely upon services, features, and functions that are currently available. Unreleased features or functionality described in forward-looking statements are subject to change at Databricks discretion and may not be delivered as planned or at all
	Reliable data pipelines require a unified platform with data intelligence
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Views in DLT
	Slide Number 13
	New MV/ST observability features
	Demo: Materialized Views Observability
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Data Pipelines Made Simple with DLT
	Slide Number 21
	Slide Number 22
	Ensure correctness with expectations in DLT
	Slide Number 24
	Slide Number 25
	Slowly Changing Dimensions Type 2
	Horizontal Autoscaling
	Vertical Autoscaling
	Automated service upgrades
	Automated Data Management
	DLT operational dashboard
	The Event Log
	DLT Notifications and Monitoring
	Slide Number 34
	Scheduling pipelines
	Incremental Refresh for MVs
	Streaming tables with managed file events
	Slide Number 38
	Slide Number 39
	Slide Number 40
	DLT Price-Performance
	Slide Number 42
	Raw experiment results
	Serverless DLT provides 4x better throughput
	With 32% less TCO
	Overall 5x better price performance than DLT classic
	Slide Number 47
	Raw results (Initial loading)
	45% less TCO with serverless on the initial loading
	On the initial load, Serverless DLT provides
	3.8x better price performance of initial load on serverless DLT
	Raw results (Subsequent updates)
	Incremental refresh resulted in 98% cost savings
	On the subsequent updates, Serverless DLT provides
	Slide Number 55
	Run in your own environment
DLT Ingestion and MV transformation benchmarks
	Developing with DLT
	Creating A Pipeline
	Automated dependency resolution
	Direct Publishing Mode in DLT
	Building reliable pipelines
	Databricks Asset Bundles (DABs) for development
	Demo: DLT development in the notebook
	Slide Number 64
	Reference architectures
	Slide Number 66
	Slide Number 67
	Slide Number 68

